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Abstract
We show that depletion forces induced by surfactant micelles can be profitably
exploited to perform an efficient a posteriori size fractionation of suspensions
of optically anisotropic colloids. Efficiency and limits of the fractionation
protocol are discussed both on ‘model’ and technical polydisperse lattices.
This method can be used to single out fractions composed by long fibrillar
particles, showing evidence of mesogenic behaviour. Depolarized dynamic
light scattering is used to extract the particle translational and rotational
diffusion coefficients DT and DR as a function of particle volume fraction.
Both the concentration behaviour of DT and the full shape of the depolarized
correlation functions show distinctive and partially unexpected features.

1. Introduction

Since this is, after all, a special issue in honour of Peter Pusey, let us start with a personal
memory. Some years ago (it must have been around 1991), the first author of this paper was
travelling back from a meeting together with Peter. Those years had been extremely fruitful
for colloid physics studies, so much that the author was wondering if there was still something
relevant left to do with ‘model’ particles, or whether it was better to start playing with different
things. The latter was not Peter’s point of view. With one of his usual understatements, he said
that he was ‘mixing colloids with polymers’, and observing things that ‘could have been of
some interest’. I was not particularly excited by the topic, and just said to myself ‘this is still
the same old story about physicists, deliberately making things messy in order to build new
problems—look how different is for biologists, who don’t need at all to look for problems!’.
This omen surely does not match more illustrious ones about the impossibility of building
atomic weapons, or selling more than a few hundreds PCs, but still points out how poorly a
physicist can play Cassandra. In a few years, indeed, the understanding of depletion forces
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stemming from Peter’s joint work with other first-class scientists [1] has shed totally new
light on a whole class of phenomena, including many related to biology [2], and opened up
interesting theoretical questions about the phase behaviour [3] and metastability [4] of systems
interacting via a short-range potential.

Although dealing with the same topic, this paper faces more mundane and practical
issues. Namely, can we exploit depletion forces in order to obtain colloidal systems of
interest that cannot be directly synthesized? Obtaining monodisperse particles is of primary
importance for basic colloid physics studies but, although ingenious methods have been found
to produce monodisperse spheres, most synthesis methods of inorganic and polymer colloids
yield particle-size distributions which are at best relatively narrow. This is particularly true
when particle synthesis involves delicate and sometimes dangerous chemical steps, which
can hardly be performed in a research laboratory, and force the investigator to be content
with samples made in large plants. Fluorinated latex particles, which show very peculiar and
interesting features, unluckily belong to this category. In this paper we show however that
surfactant-induced depletion forces can be profitably exploited for an efficient a posteriori
particle size fractionation of polydisperse fluorinated lattices.

Surfactant-induced fractionation has been demonstrated by Bibette in his pioneering work
on SDS emulsions, and used to obtain very monodisperse oil droplets [5]. Size-dependent
phase segregation is in this case introduced by excess of the very same ionic surfactant which
stabilizes the oil droplets, and which is supposed to act as a depleting agent when dispersed
in the continuous phase in micellar form. Later, Piazza and Di Pietro [6] showed that similar
effects can be obtained by adding a few per cent nonionic surfactant to a polymer colloid latex,
and that the phase behaviour of the system is consistent with what is expected for particles
interacting via very strong short-range depletion forces induced by the surfactant micelles.
While in the emulsion case both the original droplet size distribution and the depletion effects
are determined by surfactant concentration, this latter method allows us to control separately
the nature of the dispersion to be fractionated and the depletion effects, therefore allowing for
a detailed study of the fractionation efficiency. An additional advantage of nonionic-surfactant
fractionation is that it can be finely tuned by temperature, since micellar-induced depletion
effects show a large enhancement near the lower consolution curve of these agents with water,
with universal features depending only on the temperature distance from the critical point [7].
It is important to notice that two distinct phenomena take place by progressively adding the
nonionic surfactant, which first adsorbs on the particle surface, forming a sterically stabilizing
layer, and then, when full surface coverage is reached, forms micelles which act as depleting
agent. The first crucial step requires a hydrophobic particle surface. For hydrophilic surfaces
such as silica, surfactant micelles (which probably adhere to the particle surface) very often
act as a coagulating agent.

In this paper, the previous findings are first exploited in order to single out some additional
features of surfactant-induced fractionation, and to inquire about its efficiency. We shall
consider three exemplifying situations.

(i) By preparing a controlled bimodal distribution of spherical particles,we show that particles
of larger size can be singled out, severely reducing the concentration of the smaller
component.

(ii) By repeated separation of fairly polydisperse lattices, we show that fairly monodisperse
fractions of rodlike particles can be obtained.

(iii) Finally, we show that this method can be used to ‘slice down’ very narrow size distributions,
and filter out particle fractions that are too small to be detected even by using sensitive
methods such as dynamic light scattering (DLS).
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In the second part, we present an exploratory survey of a system of very long rodlike
fluorinated particles obtained by large-batch fractionation and a preliminary study of the
particle translational and rotational diffusion coefficients approaching a nematic phase.

2. Materials and methods

All measurements have been performed on suspensions of fluorinated polymer colloids,
kindly supplied by Ausimont S.p.A., Milano (Italy). Such particles, made of
polytetrafluoroethylene (PTFE) or tetrafluoroethylene copolymers with perfluoroalkyl-
vinylethers (PFA) or hexafluoropropene (FEP), have very distinctive optical properties [8].
First of all, their average refractive index is very similar to that of water, allowing optical
studies of concentrated suspensions. Moreover, they are optically anisotropic due to their
partial crystallinity, and therefore scatter a noticeable amount of depolarized light. In addition
to this, since the density of PTFE is quite high (ρ ≈ 2.2), phase separation processes take place
in a relatively short timescale (of the order of tens of minutes). The properties of the specific
batches which have been used are stated within the description of each single experiment.
As a depleting agent, we have used the nonionic surfactant Triton X100 (Room & Haas).
The general sample preparation protocol is the following. A dilute particle batch is sterically
stabilized by adding an amount of Triton sufficient for full particle surface coverage. This
can be achieved by adding a surfactant volume fraction �S ≈ (3d/R)�P , where d ≈ 2 nm
is the approximate length of the surfactant chain, R the particle radius and �P the particle
volume fraction. Once stabilized, the particles do not show coagulation up to ionic strengths
in the molar range. In order to screen electrostatic effects, a fairly concentrated NaCl solution
is added to reach a final ionic strength I = 100 mM l−1. Additional Triton, which goes into
solution in micellar form and plays the role of the depleting agent, is then progressively added
to the solution. When phase separation is observed, the sample vials are left to equilibrate for
one day. The relative volume of the separated phase at the bottom of the cell is approximately
evaluated by measuring the height of the sediment, and then the separated phase and the
supernatant are sampled. Measurements of the size distribution of the original samples and
of the separated phases are made by DLS using a Brookhaven BI 9000 multiple-sample-time
correlator. Our scattering apparatus allows us to perform depolarized dynamic light scattering
(DDLS) measurements of the particle rotational diffusion coefficient DR . Since DR scales as
the inverse of the cube of the particle radius, DDLS measurements are much more sensitive
to particle polydispersity than ‘conventional’ DLS. The results collected in figure 1, which
refer to measurements performed both on fluorinated and on calibration standard polystyrene
lattices (Polyscience, USA), show that the minimum amount of surfactant needed to trigger
phase separation scales roughly as the inverse of the particle radius R. This trend can be
understood by observing that for small values of the size ratio r/R, where r is the micellar
radius, the depletion potential at contact is given by U/kB T ≈ 3R�S/(2r), with �S denoting
the volume fraction of micelles. From this expression, the observed scaling follows directly
once it is assumed that phase separation takes place below a fixed critical value of the potential
at contact.

3. Features of the depletion–fractionation process

3.1. Model mixtures of spherical colloids

In order to test the effectiveness of the separation method, we have studied mixtures of
monodisperse PFA particles having radius R1 = 75 nm and FEP particles with radius
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Figure 1. Minimum amount cS0 of Triton X100 needed to induce phase separation of colloidal
lattices, as a function of the reciprocal particle size. Data refer to both fluorinated and polystyrene
monodisperse colloids.

R2 = 39 nm. A 30% w/w Triton solution, prepared in 100 mM l−1 NaCl, was progressively
added to a mixture specifically prepared at particle volume fraction �1 = 0.006 of PFA
particles to a FEP suspension at volume fraction �2 = 0.025 (sample M0). Clouding followed
by phase segregation was first observed for Triton concentration cS = 8.5% w/w. The sample
was left to equilibrate for a day, and then the lower phase (sample M1) was extracted. More
Triton was then added to the surnatant phase, until a second phase separation was detected for
cS = 13% w/w. The lower phase was once again extracted (sample M2). After this second
extraction, the supernatant phase scattered very weakly, showing that almost all colloidal
particles had separated in the first two steps. The process was nonetheless carried on, but
no further signs of clouding or phase separation were observed up to a Triton concentration
cS = 16% w/w. Notice that the values of cS marking the onset of the two segregation processes
coincides with those needed, according to figure 1, to phase separate pure PFA and FEP.

The dense separated phases were abundantly diluted in water, in order both to suppress
multiple scattering and to reduce the overall Triton concentration to values which do not
appreciably affect the solvent viscosity. Figure 2 compares the DLS scattered field correlation
functions g1(t) obtained for the initial mixture and for sample M1 with those measured for
pure PFA and FEP suspensions in a Triton/water solution at the same surfactant concentration.
While sample M0 shows a behaviour intermediate between those found for the two pure
components, the experimental g1(t) obtained for sample M1 is essentially indistinguishable
from the correlation function for a pure PFA suspension. The initial decay rate of the original
mixture � = 1410 s−1 is reasonably consistent with the value � = 1370 s−1, calculated
from a molecular weight average of the decay rates of the pure components. The decay rate
for sample M1 instead differs by about 4% from the value obtained for pure PFA. Such a
value for the decay rate implies that the concentration ratio of FEP to PFA in sample M1 is
reduced by at least a factor of ten compared with sample M0. Since the total volume of the
first separated phase amounts to about 1/20 of the original batch volume, most of the residual
FEP is probably due to particles ‘geometrically trapped’ within the separated PFA phase, and
could therefore be further reduced starting, for instance, from more dilute suspensions. The
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Figure 2. Field correlation functions for the original FEP + PFA mixture M0 prepared according
to the text (•) and for the first separated fraction M1 (◦). Full and dotted curves are correlation
functions obtained for pure PFA and FEP respectively. The inset, giving the short-time behaviour
of the correlation functions on a linear scale, also highlights the non-exponential shape of the
correlation function for fraction M2 (�).

situation is different for sample M2, whose correlation function is also shown in the inset.
Although the first cumulant of g1(t) does not differ too much from the value for pure FEP,
the correlation function shows a noticeable deviation from the exponential shape even at short
time. This may be partly due to the residual presence of PFA particles that partitioned between
the two phases during the first separation process. When phase separation occurs at high
surfactant concentration as for sample M2, we also notice however the presence of larger
particle aggregates that do not dissolve by dilution. The separation protocol therefore looks
very efficient for PFA particles, but poor for FEP.

3.2. Fractionation of polydisperse suspensions

We have applied the depletion–fractionation method to polydisperse lattices of pure PTFE
particles obtained by Ausimont using microemulsion (µE) polymerization. In fairly
controlled conditions, this synthesis method yields suspensions displaying the co-presence
of spherical and rodlike particle morphologies. Moreover, µE polymerization of PTFE
yields particles which apparently have a much more pronounced crystallinity compared
with conventional emulsion polymerization, and which therefore show much larger optical
anisotropy. Transmission electron microscopy pictures of the specific suspension we shall refer
to (batch A), which had a total solid content of about 18% w/w, revealed a broad particle size
distribution that, although very skewed towards small sizes, showed the distinctive presence
of rodlike particles. An index-match curve of the batch gives an average refractive index
n̄ ≈ 1.37 and an optical anisotropy �n ≈ 0.08 (about twice the value found for short PTFE
rods obtained by conventional emulsion polymerization), so the scattering in pure water is only
about twice that in ‘best-matching’ conditions.

Aiming to ‘tune’ the fractionation protocol, we first prepared small samples with fixed
particle volume fraction � ≈ 0.05 and Triton concentration cS varying from 3 to 12%, in
the presence of 100 mM l−1 NaCl. Samples with cS above a threshold value cS ≈ 6%
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Figure 3. Ratio V/VT of separated to total volume for batch A as a function of surfactant
concentration cS . The inset shows the approximate particle size distribution for the original sample
batch as obtained from DLS measurements.

showed a rapid turbidity enhancement and fully phase-separated in a timescale of a few hours,
leaving a thick, strongly scattering sediment at the bottom of the cell. Figure 3 shows that the
ratio V/VT of the separated phase to the total sample volume increases almost linearly with
surfactant concentration above the threshold value. A larger sample (about 25 ml) at an initial
Triton concentration cS = 7% was then prepared and allowed to separate for about one day.
We then extracted the lower separated phase (sample A1, with a volume of about 0.5 ml), and
the upper phase was titrated to cS = 9%, adding a concentrated Triton solution, and allowed to
fully separate. The bottom phase was again extracted (sample A2), and the whole protocol was
repeated by increasing the surfactant concentration up to 12%, obtaining sample A3. In each
stage of this fractionation procedure, a small amount of the surnatant phase was also sampled.
A further increase of cS to 15% yielded a very small amount of separated phase. Nonetheless,
the surnatant still scattered noticeably, showing that a conspicuous amount of particles had not
been separated out from the original suspension.

In order to have a better estimate of their composition, the original suspension (sample
A0) and the fractionated phases have been studied by DDLS, which, as we have said, gives
a better resolution than DLS for low degrees of polydispersity. Let us simply recall that,
for dilute suspensions of monodisperse spherical particles, the decay rate �V H of the field
correlation function gV H (t) measured in VH geometry (that is, by detecting the horizontal
polarization component of the light scattered from a vertically polarized beam) is given by
�V H = DT q2 + 6DR , where DT and DR are the particle translational and rotational diffusion
coefficients and q is the scattering wavevector. Normally, depolarized scattering is so weak
that the solvent composition has to be modified in order to match as closely as possible the
average particle refractive index. However, due to the strong optical anisotropy of batch A
particles, the need to reduce the refractive index mismatch is not compelling, and the original
samples A1–A3 were simply diluted in water by a factor of ten. DDLS correlation functions
were measured at fixed scattering angle ϑ = 15◦. Since at λ = 633 nm this corresponds
to q = 3.46 × 10−4 cm−1, for particles with a radius smaller than 100 nm the ratio of the
translational to the rotational contribution to the decay rate �T /�R = 2/9(q R)2 is less than
3%, and the decay of gV H (t) is essentially due only to rotational diffusion.
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Figure 4. Depolarized field correlation functions for the original sample batch A0 (◦) and for
separated fractions A1 (•), A2 (�) and A3 (�), with the short-time behaviour of gV H (t) for sample
A1 expanded in the inset. DDLS results for the upper surnatant phase after three separation steps
(�) are also shown for comparison.

A preliminary estimate of the particle size for the original batch (sample A0), obtained by
a regularized inverse Laplace transform (CONTIN) of polarized DLS correlation functions and
shown in the inset of figure 3, suggests a wide distribution, with a broad maximum roughly
centred around an effective hydrodynamic radius R ≈ 20 nm but extending up to much
larger sizes. Indeed, the DDLS correlation function for sample A0 shown in figure 4 displays a
markedly non-exponential shape, which can be hardly fitted using a simple cumulant expansion.
Conversely, gV H (t) for the first separated phase, which looks approximately exponential over
most of its decay range, shows that sample A1 has a much lower polydispersity. The inset
shows that, however, a small number of much smaller particles can still be detected. The DDLS
correlation function for sample A2 shows that the second fraction is composed by particles
with a smaller average size, but also that the degree of polydispersity is rather higher. Similarly
to what we found for the PFA + FEP mixture, the long-time tail in gV H for sample A3 suggests
that formation of small amounts of large, irreversible aggregates may be associated to phase
separation at high surfactant concentration. Finally, the remaining surnatant after separation
of fraction A3, although mainly composed by small particles, still displays the presence of
larger objects. We can therefore conclude that the fractionation method looks very promising
to separate out relatively monodisperse fractions of large particles, but performs poorly in
separating out the smaller components.

3.3. Fractionation of narrow size distributions

It is interesting to inquire about the size resolution of depletion fractionation. Therefore, we
have selected to work on a concentrated suspension of small spherical particles obtained by
µE polymerization of PFA, having an original solid content of about 30% w/w (batch B).
Figure 5 shows that the DLS field correlation function for the original batch (sample B0) is
almost exponential, giving an average particle radius R = 24 nm and a polydispersity lower
than 10%. Nonetheless, since separation of small sediments was still observed by adding
Triton at cS > 13.5%, the original batch was subjected to a fractionation protocol similar



7570 R Piazza et al

0.1

0.2

0.5

1

0 100 200 300 400 500 600 700
t (µs)

g 1(t
)

Figure 5. Polarized field correlation functions for samples B0 (•), B1 (�), B2 (◦) and B3 (�).

to that described for sample A. Separated phases were extracted for cS = 14.8, 16.6, 18.2%
(samples B1, B2, B3 respectively), and amply diluted in water in order to make the effect
of Triton on the solvent viscosity negligible. Figure 5 shows that the single fractions are still
composed by reasonably monodisperse particles, but with average sizes larger than the original
one. The average hydrodynamic radii for the three fractions are found to be R1 = 34.5 nm,
R2 = 27.5 nm and R3 = 25.5 nm respectively. By evaluating the amount and density of the
sediment, sample B1 was found to constitute about 5% of the original solid content. Such a
small number of particles with a size only 40% larger than the average can hardly be detected
by common algorithms aimed to reconstruct particle size distribution from DLS data. Still,
large-size ‘tails’ of the distribution can be filtered out by depletion fractionation.

4. DDLS from optically anisotropic ‘fibrillar’ particles

4.1. Sample preparation and features

In specific conditions, µE polymerization of PTFE may yield particle size distributions
characterized by widely distinct morphologies. The most abundant component is made of
spherical particles, with a typical diameter of few tens of nanometres, and of polydisperse short
rods with a limited axial ratio, shown for instance in figure 6(A). In addition, however, sediments
mainly composed of slender, fibrillar particles (barely visible in figure 6(B)) form over long
times at the bottom of the batch container (we notice in passing that electron microscopy
characterization of perfluorinated polymer particles is rather hard, since PTFE melts very
easily under a TEM electron beam, while SEM generally lacks a sufficient resolution). The
method described in section 3 has been used to fractionate a suspension with this composition
morphology.

In order to obtain a sufficient amount of concentrated fractions, separation has been
accomplished starting from a large batch (about 1 l). Phase segregation was observed for
cS � 5%, and the fraction we shall refer to in what follows corresponds to separation with
cS = 6%. The separated fraction was extensively dialysed against distilled water in order
to get rid of most of the surfactant. Index matching was then performed by slowly adding
glycerol up to a weight fraction of about 35% w/w. For the index-matched suspension, density



Depletion-induced fractionation of optically anisotropic particles 7571

Figure 6. (A) TEM picture of the original suspension used to fractionate batch C. (B) Traces of
fibrillar structures present in the latex sediment (courtesy of Ausimont S.p.A.)

4µm

Figure 7. SEM picture of batch C. The original batch has been preliminarily diluted, filtered on
a polycarbonate membrane, extensively washed with distilled water and finally coated with an
evaporated gold film. The bar length is 4 µm.

measurements yield a particle volume fraction �0 ≈ 0.02, which we shall take as nominal
concentration for the ‘mother’ batch (batch C). So far, we have found it rather difficult to obtain
reliable electron microscope images of batch C. Very dilute suspensions allowed us to observe
single very long, fibrillar structures, which however showed clear hints of partial melting. An
overall picture of the sample structure can nonetheless be extracted from the SEM picture of
a more concentrated dispersion in figure 7, showing a tangled fibrillar mesh. Although partial
fusion of single particles might be possible, the picture suggests a typical straight ‘persistence
length’ in the hundreds of nanometres to micrometre range.

Batch C has very distinctive optical properties. When gently shaken and viewed between
crossed polarizers, the sample indeed shows very pronounced shear birefringence, persisting
up to tens of minutes (see figure 8, left). However, the birefringence progressively vanishes,
and at equilibrium the sample looks fully optically isotropic. Polarization microscopy reveals
nonetheless the presence in still samples of strongly birefringent ‘tactoids’, that is spindle-
shaped regions with a typical size in the range of tens of micrometres shown in figure 8, right,
which slowly grow with time. Quantitative analysis of the intensity profile shows that tactoids
have rotational symmetry along the ‘spindle’ axis. This texture is normally associated with the
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Figure 8. Left: view between crossed polarizers of shear-induced birefringence textures in batch
C. Right: polarization microscopy picture of spindle-shaped tactoids. The bar length is 100 µm.

(This figure is in colour only in the electronic version)

nucleation and growth of a nematic phase. In colloid science, it has for instance been observed
by van Bruggen [11] in beautiful studies of liquid-crystal forming dispersions of boehmite rods.
However, no segregation of a macroscopic nematic phase has been observed on a timescale
of weeks. Even more, no appreciable sedimentation could be observed by centrifuging the
sample at more than 500 g for about 1 h. As we shall see, batch C is indeed very near to being
a gel- (or glass-) like phase. The observed morphology rapidly becomes much less evident
by diluting batch C, and tactoids essentially disappear for � � 0.8�0. A full discussion of
the sample morphology and phase behaviour is not however the subject of the present study,
and is deferred to a future publication. In this preliminary survey we shall mainly concentrate
on diffusion properties, and shall particularly discuss the nature of the information that can be
extracted from DDLS measurements.

4.2. DDLS from anisotropic particles

Let us briefly recall some basic theoretical aspects of DDLS from dilute and concentrated
suspensions of optically anisotropic particles. For dilute suspensions of anisotropic particles
with size much smaller than q−1, particle translations and rotations decouple, and the scattered
field is simply amplitude modulated by rotations, in addition to the usual phase modulation
due to translational diffusion. As we anticipated in section 3, gV H (q, t) turns out to be a
simple exponential with an expression for the decay rate �V H where a q-independent term,
proportional to DR , adds to the usual translational diffusion contribution, quadratic in the
scattered wavevector.

Things are different for concentrated suspensions. For spherical particles interacting
via an isotropic potential, rotations of different particles rigorously decouple. As a main
consequence, the coefficient of the quadratic term in �V H can be shown to be proportional
to the concentration-dependent particle self -diffusion coefficient DS , at variance with DLS,
which measures collective diffusion [8]. Depolarized light scattering has, in other words,
close analogies with incoherent neutron scattering from simple liquids. Conversely, it is not
known whether or to what extent rotational–translational decoupling pertains in concentrated
suspensions of rodlike particles, even if they have a length L � q−1.

Theory becomes much more complicated, even in the dilute limit and in the Rayleigh–
Debye–Gans scattering approximation,for long rodlike particles with L � q−1, because of two
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basic facts. First of all, rotations on the scale of q−1 induce a phase modulation of the scattered
field, which combines with the translational contribution. Moreover, translations and rotations
are hydrodynamically coupled in the particle diffusion equation. The theory of single-particle
DDLS from long optically anisotropic rods has been developed by Aragón and Pecora, both
neglecting hydrodynamic coupling [9] and in the more complex full-coupling case [10]. We
shall simply recall the general features of their method and results. The starting point is to
regard the particle as composed by small optically anisotropic segments, and then calculate
the depolarized scattered field by explicitly evaluating positional and orientational correlation
of the different segments dictated by the specific particle geometry. Within the decoupling
approximation, the depolarized scattering correlation function for thin rods is given by

gV H (q, t) = N exp(−q2 DT t)
∑

s�2,even

(2s + 1)CV H
s (x)e−s(s+1)DRt , (1)

where x = q L/2, DT is the average of the rod translational diffusion coefficients along the
principal axes and CV H

s (x) are quadratic forms of particle ‘shape factors’ defined in terms of
spherical Bessel functions. The structure of gV H (q, t) in the presence of coupling, although
much more complicated, has an expression similar to equation (1), with the main difference
that each relaxation is split into two contributions having slightly different time constants, with
weighting coefficients having a very complicated dependence on x and on the roto-translation
coupling parameter γ = 3q2 DT /DR . Evaluation of gV H (q, t) requires therefore an elaborate
numerical calculation for each scattering angle. We can however try to extract some general
aspects of the solution. Since both the weighting coefficients and the relaxation times depend
on q , the initial decay rate of gV H (q, t) is no longer expected to scale linearly with q2. Coupling
is particularly significant at large γ , that is for long rods at large q . However, in the very same
conditions DR is much smaller than DT q2, and since the decay rates of the single correction
terms are proportional to DR , their overall contribution to GV H may not be too large. For
instance, an explicit calculation by Aragón and Pecora for thin rods with q L ∼ 6 shows that
the leading term for gV H is given by gV H ≈ e−DT q2t [0.85e−5.42DRt + 0.15e−6.25DRt ], which
could not be distinguished at all from gV H = e−(DT q2+6DR )t using common light scattering
methods. In the limit of q = 0 the decay rate is of course always given by �V H = 6DR .

Theory becomes even more complicated if the particles are flexible. For Gaussian coils
made of anisotropic segments, expressions for the polarizability tensor do exist [14], but we
are not aware of any general theory of DDLS from rods with finite rigidity. In the limit of very
flexible coils, the concept of a rigid rotational motion obviously loses precise meaning. The
coils performs internal motion which can be described as a superposition of modes using for
instance the Rouse model [16]. The rotational relaxation time of a polymer coil can actually
be defined as the longest relaxation time τR of the end-to-end vector correlation function
〈R(0)R(t)〉, which coincides with the slowest Rouse relaxation time. In some sense, τR is a
‘true’ rotational time, since the most probable shape of a Gaussian chain is ellipsoidal, with the
longest axis parallel to the end-to-end vector [14]. We also point out that the other relaxation
modes contribute only at very short times (the second relaxation time, for instance, is a factor
of nine shorter than τR).

For concentrated dispersions of long rods,coupling between rotations and translations,and
also between rotations of different particles,can only be supposed to become stronger. Because
of coupling, depolarized scattering is no longer fully incoherent,and therefore gV H (q, t) ceases
to be directly related to self-diffusion (or, more precisely, to be the self-intermediate scattering
function). A very open question is therefore whether DDLS essentially measures collective
diffusion such as conventional DLS, or rather a ‘mixture’ of the two diffusion processes. This
question can be profitably addressed dealing with suspensions of particles interacting via a
repulsive potential, where collective and self-diffusion display opposite trends as a function of
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Figure 9. Short-time decay of DDLS correlation functions for batch C at ϑ = 130◦ (•) and
ϑ = 20◦ (◦), plotted versus q2t . Full correlation functions are compared in the inset to gV H (t)
obtained at ϑ = 20◦ (full curve) and 130◦ (broken curve) for a dilute sample of the original latex
before fractionation.

concentration, the former increasing while the latter decreases with c. It should therefore be
easy to settle the problem even using non-fully-ideal systems.

4.3. Single-particle limit

We first discuss DDLS results from a dilute suspension at particle volume fraction � ≈ 0.0013,
obtained by diluting the original batch in glycerol/water at 35% w/w.

The inset of figure 9 shows that the DDLS correlation functions measured at scattering
angles of 130◦ (q = 2.47 × 105 cm−1) and 20◦ (q = 0.47 × 105 cm−1) are totally different
from gV H (t) obtained at the same angles for the non-fractionated latex diluted in the same
glycerol/water solvent. For the original latex, gV H (t) at 20◦ displays an extremely broad
decay, characterized by two main decay rates roughly differing by four order of magnitude.
Conversely, gV H (t) at 130◦ has a much faster decay corresponding to translational diffusion
of polydisperse small particles with an average size around 10 nm. This different behaviour
is due to the fact that large particles, which have a strongly forward-peaked form factor,
do not appreciably contribute to the intensity scattered at large angles. The main body of
figure 9, which displays the short-time behaviour of gV H (t) for batch C (plotted for graphical
convenience as a function of q2t), shows that the shape of gV H measured at ϑ = 130◦ is very
nearly exponential, while larger deviations are present at ϑ = 20◦. Fitting the correlation
function measured at ϑ = 130◦ with a two-cumulant expression ln[gV H (q, t)] = −�t + �2t2,
we found a polydispersity index corresponding to a size distribution with variance σ 2 =
�2/2�2 ≈ 0.2. This value should be considered as an upper limit, since deviation from a
pure exponential shape could be due, as we have previously discussed, to roto-translational
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Figure 10. Polarized form factor for a diluted sample of batch C. Full curves are fits to the
Debye structure function (equation (3)). Broken curves are rigid-rod form factors for rod length
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plot’ in the inset.

coupling. The polydispersity index for the correlation function obtained at ϑ = 20◦ is about
three times larger than at ϑ = 130◦. This result is consistent with the fact that the decay rate at
large q is essentially determined by DT , while in the limit of q = 0 it is due only to rotational
(orientational) correlation. Since, in general, rotational diffusion scales as the inverse of the
cube of the particle size L, while DT only as L−1, the polydispersity for q ≈ 0 is indeed
expected to be about three times larger than at large q .

We have tried to extract information about the particle shape from static light scattering
measurements on a sample made by diluting batch C by a factor of 20 in pure water. The
obtained polarized form factor cannot be properly fitted with an expression for monodisperse
hard rods. Figure 10 shows indeed that the form factor for a slender rod with length
L = 0.5 µm, which approximately fits the low-q behaviour, completely fails to describe the
large-q behaviour, which conversely can roughly be fitted using a rod length L = 0.65 µm.
Since these values could be within the size standard deviation obtained from DT , it is possible
that a suitable size distribution may give a better fit. However, we may wonder whether the
shape of P(q) might rather be due to partial rod flexibility. Therefore, we shall try to borrow
from polymer physics a possible ‘statistical’ description of P(q). The form factor for a fully
flexible coil is given by the Debye structure function:

P(x) = 2

x2
[exp(−x) + x − 1], (2)

where x = (q Rg)
2 and Rg is the coil gyration radius. Figure 10 shows that, surprisingly,

equation (2) gives a much better fit using a gyration radius Rg ≈ 0.15 µm, which corresponds
to an average end-to-end distance R = √

6Rg ≈ 0.35 µm. The internal rigidity of a semi-
flexible ‘wormlike’ chain yields deviations from the Debye structure function at high q. In order
to give an estimate of particle rigidity, in the inset of figure 10 we plot (Rgq)2 P(q) versus q .
For a fully flexible chain, this ‘Kratky plot’ should saturate to two for q � Rg [15]. The
quasi-linear increase which is experimentally found at large q witnesses instead the presence
of a rather large rigidity persistence length, which from the plot can be be roughly estimated
to be l p ≈ 50 nm.
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Although we are not in a position to claim that this ‘semi-rigid-coil’ description
corresponds to the real morphology of the particles, we observe that DDLS data are also
consistent with the model. The first cumulant �V H for gV H (q, t) measured at different angles is
plotted in figure 11, together with results for higher volume fractions, to be discussed later. First
of all, we observe that �V H shows reasonably good scaling with q2 in the whole investigated
q-range, so that, within our experimental accuracy, we do not find strong effects of coupling on
�V H (q). Fitting the data as �V H = τ−1

R + DT q2 we obtain DT = (7.4 ± 0.2)× 10−9 cm2 s−1,
τR = 0.028 ± 0.006 s. The translational diffusion coefficient for a flexible coil is related to its
gyration radius by [14]

DT ≈ 0.2
kB T√
6ηRg

, (3)

where η is the solvent viscosity. From equation (3) and the experimental value for the
solvent viscosity η = 2.508 cP measured with an Ubbelhode viscosimeter, we obtain
Rg = 0.18 ± 0.01 µm. As discussed before, the quantity which better corresponds to a
rotational diffusion coefficient for a flexible object is the longest internal relaxation time,
which is related to Rg by [14]

τR ≈ 5.85ηR3
g

kB T
. (4)

From the experimental value for τR we obtain Rg ∼ 0.20 ± 0.02 µm. Translational and
rotational diffusion therefore give values for the gyration radius that are within 20 and 30%
respectively of the value derived from P(q). We notice that, had we assumed the particles
to be rigid rods, both the rod length L and the length-to-diameter ratio L/b could have been
calculated using

DT = kB T

3πηL
ln L/b

DR = 3kB T

πηL3
[ln L/b − δ],

(5)

where δ = 0.8 in the simplest approximation [12] and is slightly dependent on L/b in more
refined models [13]. Equation (5) yields L ≈ 0.95 ± 0.08 µm, which is inconsistent with
static data. The axial ratio can be estimated as L/b ≈ 50. Although this quantity appears
logarithmically in equation (2), and therefore is subjected to much larger error, a rod diameter
of about 20 nm seems definitely to be much smaller than the average value d ≈ 60–80 nm
that can be guessed from the mesh thickness in figure 7. Finally, as concerns roto-translational
coupling, if we assume that the average end-to-end distance plays the role of an ‘effective’
length Lef f , we have q Lef f ≈ 9, which, as previously discussed, is not a very large value.
For 1 µm long hard rods, the q-scaled size is q L ≈ 24, and coupling would surely be more
serious.

4.4. Concentration dependence

We turn now to the concentration dependence of gV H (q, t) observed in suspensions prepared
by diluting batch C with index-matched solvents. We first point out that, consistently with
macroscopic observations of the progressive disappearance of shear-induced textures, all
correlation functions are found to be ergodic (that is, fully decaying to zero over sufficiently
long delays) up to the original batch concentration. However, approaching �0, intensity
fluctuations became extremely slow, and reliable data could be taken up to particle volume
fractions � ≈ 0.8�0. As further discussed later, we observed moreover that the shape of the
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Figure 11. First cumulant of gV H (q, t) for some of the investigated samples at �/�0 = 0.07 (•),
0.33 (◦) and 0.8 (�). Linear fits extend up to the maximum q-value used to obtain the short-time
diffusion coefficients DT shown in the inset.

correlation function becomes less and less exponential by increasing �. Nonetheless, it is
always possible to derive an initial decay rate of gV H (q, t) by fitting the correlation function
at sufficiently short times using a two-cumulant expansion.

Figure 11 shows the wavevector dependence of the first cumulant �V H obtained for some
of the investigated samples. We can notice that deviations of �V H from a linear dependence
on q2 become more pronounced by increasing �. Flattening of �V H (q) at large q , which is
probably a mark of consistent roto-translational coupling at high concentration, does not allow
us to extract a translational diffusion coefficient from a linear fit of the decay rate over the
whole q-range. Therefore, as shown in figure 11, a linear fit of �V H (q) was performed only in
a limited q-range. The derived diffusion coefficient DT , shown in the inset of figure 11, should
then be considered as a short-time, low-q limit. The plot shows that DT decreases with �,
dropping for � = 0.8�0 to slightly less than half of the dilute-limit value. The large error bars
at high � are due to the increasingly shorter time range where gV H (q, t) could be properly
fitted in order to derive the first cumulant �V H . Although the experimental accuracy is much
poorer, a decreasing trend with � can also noticed for DR , but a finite short-time rotational
diffusion coefficient seems to persist up to � = 0.8�0.

A puzzling feature of the observed behaviour is that DT monotonically decreases with �, as
one could predict for a self -diffusion coefficient, and contrary to what is expected for collective
diffusion of particles (or coils) interacting via a repulsive excluded volume potential, which
should conversely increase with concentration. This seems to suggest that, even in concentrated
dispersions, gV H (q, t) might still essentially behave as a self-intermediate scattering function.
In view of the strong coupling between rotational diffusion of distinct particles, this finding is
utterly surprising. One may guess that decoupling could still hold, provided that dynamics is
probed only for sufficiently short times. However, the following discussion of the full shape
of gV H (q, t) shows that the observed trend of translational diffusion with concentration is
retained through the whole decay of the correlation function.

Figure 12 shows a few depolarized correlation functions obtained at ϑ = 120◦ for
some of the investigated samples. While a two-cumulant fit works pretty well for the most
dilute solution, ln[gV H (q, t)] seems to bend continuously in time at larger �, witnessing the
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occurrence of many relaxation times. Therefore, extracting a meaningful short-time diffusion
coefficient from the initial slope of gV H (t) becomes progressively harder at larger �. A
commonly used trial fit function for broad distributions of relaxation times is a stretched
exponential

gV H (t) = exp[−(t/τ)α], (6)

which can be shown to be the exact asymptotic solution for the long-time behaviour of the
continuous superposition of many exponential relaxations. The full curves in figure 12 show
that the full correlation functions can indeed be fitted quite well using this functional form,
except at very short times (corresponding, for instance, for the largest volume fractions to less
than a 10% of the total decay of gV H (t)), where a finite initial slope can be still defined. The
same considerations are valid for all scattering angles when �/�0 � 0.3. The inset shows that,
for fixed volume fraction, the ‘stretching’ exponent α slightly depends on q , and approaches
for large � a value α ≈ 0.5. For the superposition integral leading to the stretched-exponential
shape, this corresponds to an exponentially decreasing distribution of relaxation times [17].

Whatever the shape of the correlation function, we can always define an average decay
time as

τavg
.=

∫ ∞

0
gV H (t) dt, (7)

which for a stretched exponential is related to the decay constant τ by τavg = α−1�(α−1)τ

(where �(x), not to be confused with a decay rate, is the ordinary gamma function).
Figure 13 shows that the average decay rate �

avg
V H = (τ avg)−1 scales linearly with q2 and,

in contrast to what has been found for the short-time diffusion constant, no ‘flattening’ at high
q seems to be present. The plot also shows that, for �/�0 = 1/3, �

avg
V H calculated from

the fit parameter τ closely agrees with the value found from a direct numerical integration
of the full correlation function, confirming that the experimental correlation functions can be
well described as stretched exponentials. The slope of �

avg
V H versus q2 yields an ‘average’
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Figure 13. Average decay rate of gV H (q, t), obtained by fitting the correlation functions of some
of the investigated samples with a stretching exponential and calculating �

avg
V H as explained in the

text. Volume fractions are �/�0 = 1/3 (�), 0.6 (◦) and 0.8 (•). For comparison, we also show
�

avg
V H calculated for �/�0 = 1/3 by numerical time-integration of gV H (q, t) (�). The inset shows

Davg
T derived from linear fits to the data.

translation diffusion coefficient Davg
T , which is shown in the inset. Compared with the short-

time value DT , Davg
T shows a more pronounced, almost linear decrease with �, and becomes

vanishingly small for values of � very close to �0. As concerns the zero-q extrapolation
of �

avg
V H , which would give a value Davg

R for the average rotational diffusion coefficient, it is
hardly distinguishable from zero for � � 0.5�0. It is therefore possible that rotational motion
in such concentrated suspensions is non-ergodic, and limited to finite angular fluctuations.
Conversely, although the intercepts of the linear fits to the data present some incertitude due
to data scattering, correlation functions taken at ϑ = 15◦, with long accumulation time and
pretty good statistics, seem definitely to imply free rotation at least for � � 0.3�0. One may
wonder whether the fact that Davg

T vanishes around �0 (which is, after all, nothing but the
concentration of the original sample batch!) is simply incidental. We recall however that the
original sample batch withstood further concentration, not only by gravitational settling but
also by centrifuging (this is actually the only reason why �0 is the largest volume fraction
we have been able to investigate). Vanishing of Davg

T might be therefore due to the onset of a
macroscopic ‘glassy’ behaviour, anticipating and hindering full separation of a nematic phase.

5. Conclusions

We have shown that depletion effects induced by nonionic surfactant micelles can be profitably
exploited in order to perform a posteriori fractionation of polydisperse fluorinated particle
lattices. In particular, the developed protocol seems to work reasonably well in selecting
the largest-size components of a dispersion. By applying the method to specific PTFE
lattices obtained by µ-E polymerization, suspensions of ‘pauci-disperse’ fibrillar particles
can be fractionated. We have presented a preliminary investigation of this system, which
shows very interesting morphological features and, due to the intrinsic optical anisotropy
of the particles, opens to the possibility of studying dynamic depolarized light scattering in
suspensions showing mesogenic phases. The observed features of DDLS are quite puzzling.
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Although particle size and geometrical anisotropy are rather large, and coupling of rotations
and translations at different particles should be expected in the investigated concentration
range, the diffusion coefficients that can be extracted both from the short-time and from the
full decay of gV H (q, t) decrease with concentration, retaining features which are typical of
self-diffusion. This apparent contradiction could probably be settled by developing a more
extended theory of DDLS from concentrated suspensions. The fractionation method we have
discussed could probably be improved by using different, more efficient, depleting agents, and
with some effort dispersion with narrower size distributions can probably be obtained. The
opportunity of fractionating long optically anisotropic particles with a narrow size distribution,
resembling giant semi-flexible polymers, is particularly alluring, and will allow us to apply
DDLS to morphologically and structurally complex colloidal suspensions.
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